The Digital Abstraction

Review

- Discretize matter by agreeing to observe the lumped matter discipline

Lumped Circuit Abstraction

- Analysis tool kit: KVL/KCL, node method, superposition, Thévenin, Norton (remember superposition, Thévenin, Norton apply only for linear circuits)

Today

Discretize value \longrightarrow Digital abstraction

Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits

Reading: Chapter 5 of Agarwal \& Lang

But first, why digital?

In the past

Analog signal processing

By superposition,

$$
V_{0}=\frac{R_{2}}{R_{1}+R_{2}} V_{1}+\frac{R_{1}}{R_{1}+R_{2}} V_{2}
$$

If $R_{1}=R_{2}$,

$$
V_{0}=\frac{V_{1}+V_{2}}{2}
$$

The above is an "adder" circuit.

Noise Problem

add noise on
this wire $\mathbf{~ м и м m ~}$

... noise hampers our ability to distinguish between small differences in value e.g. between 3.1V and 3.2V.

Value Discretization

Restrict values to be one of two

HIGH

5 V
TRUE
1

LOW
OV
FALSE
0
...like two digits 0 and 1

Why is this discretization useful?

> (Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)

Digital System noise

With noise

Cite as: Anent Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Digital System

Better noise immunity Lots of "noise margin"

For "1": noise margin 5 V to $2.5 \mathrm{~V}=2.5 \mathrm{~V}$ For " 0 ": noise margin $0 V$ to $2.5 \mathrm{~V}=2.5 \mathrm{~V}$

Voltage Thresholds and Logic Values

But, but, but What about 2.5V?

Hmmm... create "no man's land" or forbidden region

For example,

$$
\begin{aligned}
& " 1 " \rightarrow V_{H} \rightarrow 5 \mathrm{~V} \\
& { }^{" 0 "} \rightarrow \mathrm{OV} \rightarrow \mathrm{~V}_{\mathrm{L}}
\end{aligned}
$$

But, but, but ... Where's the noise margin?

 What if the sender sent 1: V_{H} ? Hold the sender to tougher standards!

But, but, but ... Where's the noise margin?

 What if the sender sent 1: V_{H} ? Hold the sender to tougher standards!
"1" noise margin: $V_{I H}-V_{O H}$
" 0 " noise margin: $V_{I L}-V_{O L}$

Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

Processing digital signals

Recall, we have only two values -

$1, \mathbf{0} \Rightarrow$ Map naturally to logic: T, F \Rightarrow Can also represent numbers

Processing digital signals

Boolean Logic

\Rightarrow If X is true and Y is true

 Then \mathbf{Z} is true else \mathbf{Z} is false.$$
\begin{aligned}
\Rightarrow Z & =X \text { AND } Y \longrightarrow \underbrace{Z=X \cdot Y}_{\text {Boolean equation }} \xrightarrow{ } \quad \begin{array}{c}
X, Y, Z \\
\text { are digital signals } \\
\text { "0" "1" }
\end{array}
\end{aligned}
$$

\Rightarrow Truth table representation:

Enumerate all input combinations

Combinational gate abstraction

- Adheres to static discipline Outputs are a function of inputs alone.

Digital logic designers do not

 have to care about what is inside a gate.

Noise

$$
z=x \cdot y
$$

6.002 Fall 2000
 Lecture 4

Examples for recitation

$z=x \cdot y$

In recitation...

Another example of a gate

If (A is true) OR (B is true)
then C is true
else C is false
$\Rightarrow C=A+\underbrace{B \quad \begin{array}{c}\text { Boolean equation } \\ O R\end{array}}$

OR gate

More gates

Inverter

$z=\overline{x \cdot y}$

Boolean Identities

$$
\begin{aligned}
x \cdot 1 & =x \\
x \cdot 0 & =x \\
x+1 & =1 \\
x+0 & =x \\
\overline{1} & =0 \\
0 & =1 \\
A B+A C & =A \cdot(B+C)
\end{aligned}
$$

Digital Circuits

Implement: output $=A+\overline{B \cdot C}$

