6.002
 CIRCUITS AND ELECTRONICS

Superposition, Thévenin and Norton

Review

Circuit Analysis Methods

KCL:
VI $\sum_{\text {node }} I_{i}=0$

- Circuit composition rules
- Node method - the workhorse of 6.002 KCL at nodes using V 's referenced from ground
(KVL implicit in " $\left(e_{i}-e_{j}\right) G$ ")

Linearity

Consider

Write node equations -

$$
\frac{e-V}{R_{1}}+\frac{e}{R_{2}}-I=0
$$

Notice: linear in e, V, I
No eV,VI terms

Write node equations --

$$
\frac{e-V}{R_{1}}+\frac{e}{R_{2}}-I=0 \quad \text { linear in } e, V, I
$$

Rearrange --

$$
\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] e=\frac{V}{R_{1}}+I
$$

G
$e=S$

Linearity

Write node equations --

$$
\frac{e-V}{R_{1}}+\frac{e}{R_{2}}-I=0 \quad \text { linear in } e, V, I
$$

Rearrange --

$$
\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] e=\frac{V}{R_{1}}+I
$$

$\begin{array}{cc}\text { conductance } & \text { node linear sum } \\ \text { matrix } \\ \text { voltages of sources }\end{array}$

$$
G \quad e=S
$$

or $\quad e=\frac{R_{2}}{R_{1}+R_{2}} V+\frac{R_{1} R_{2}}{R_{1}+R_{2}} I$

$$
e=a_{1} V_{1}+a_{2} V_{2}+\ldots+b_{1} I_{1}+b_{2} I_{2}+\ldots
$$

Linearity

 Homogeneity Superposition

Linearity

 Homogeneity

 Homogeneity Superposition

 Superposition}

Homogeneity

Linearity
 \Rightarrow
 Homogeneity Superposition

Superposition

Homogeneity Superposition

Specific superposition example:

Method 4: Superposition method

 The output of a circuit is determined by summing the responses to each source acting alone.

Back to the example Use superposition method

Back to the example

Use superposition method

V acting alone

$$
I=0 \quad e_{V}=\frac{R_{2}}{R_{1}+R_{2}} V
$$

I acting alone

sum \longrightarrow superposition

$$
e=e_{V}+e_{I}=\frac{R_{2}}{R_{1}+R_{2}} V+\frac{R_{1} R_{2}}{R_{1}+R_{2}} I
$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Yet another method...

Consider

By superposition

$$
v=\sum_{\sum_{n} \alpha_{m} V_{m}}^{\text {Units }^{\text {units }}}+\sum_{n}^{\sum_{n} \beta_{n} I_{n}+R i} \underbrace{\begin{array}{l}
\text { resistance } \\
\text { units }
\end{array}} \underbrace{\left\{\begin{array}{l}
\text { of external } \\
\text { excitement } \\
\text { behaves like } \\
\text { a resistor }
\end{array}\right.}
$$

(also independent

All
By setting

$$
\underbrace{\forall_{n} I_{n}}=0, \quad \forall_{m} V_{m}=0, \quad \begin{array}{rlrl}
& \forall_{n} I_{n} & =0, \\
i & =0 \\
i & =0
\end{array}) \quad \forall_{m} V_{m} V_{m}=0
$$

independent of external excitation and behaves like a voltage " $v_{T H}$ "
Cite as: Anent Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Or

$$
v=v_{T H}+R_{T H} i
$$

As far as the external world is concerned (for the purpose of I-V relation), "Arbitrary network N" is indistinguishable from:

Method 4:

The Thévenin Method

Replace network N with its Thévenin

 equivalent, then solve external network E.Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example:

$$
i_{1}=\frac{V-V_{T H}}{R_{1}+R_{T H}}
$$

Example:

Graphically,
 $$
v=v_{T H}+R_{T H} i
$$

Open circuit

$$
(i \equiv 0)
$$

$$
v=v_{T H} \longleftarrow V_{O C}
$$

$$
(v \equiv 0)
$$

Method 5: see text

in recitation,

The Norton Method

Norton equivalent

$$
I_{N}=\frac{V_{T H}}{R_{T H}}
$$

Summary

- Discretize matter
 LMD \rightarrow LCA Physics $\rightarrow E E$

R, I, V Linear networks

Analysis methods (linear)
KVL, KCL, I - V
Combination rules
Node method
Superposition
Thévenin
Norton

- Next Nonlinear analysis Discretize voltage

