Introduction and Lumped Circuit Abstraction

ADMINISTRIVIA

* Lecturer: Prof. Anant Agarwal

Textbook: Agarwal and Lang (A\&L)

Readings are important! Handout no. 3

- Web site -
http://web.mit.edu/6.002/www/fall00
Assignments -
Homework exercises
Labs
Quizzes
Final exam

-Two homework assignments can

 be missed (except HW11). Collaboration policy HomeworkYou may collaborate with others, but do your own write-up. Lab

You may work in a team of two, but do you own write-up.

Info handout

Reading for today -

 Chapter 1 of the book
What is engineering?

Purposeful use of science

What is 6.002 about?

Gainful employment of Maxwell's equations

From electrons to digital gates and op-amps

Nature as observed in experiments

V	3	6	9	12	\ldots
I	0.1	0.2	0.3	0.4	\ldots

Physics laws or "abstractions"

- Maxwell's \rightarrow abstraction for
tables of data

$$
V=R I
$$

Simple amplifier abstraction

Operational

amplifier abstraction abstraction

Filters

Analog system
components:
Modulators,
oscillators, RF amps,
power supplies 6.061

Digital abstraction

Combinational logic \Rightarrow
Clocked digital abstrantian
Instruction set abstraction Pentium, MIPS 6.004

Programming languages

 Java, C++, Matlab 6.001 Software systems 6.033 Operating systems, BrowsersMice, toasters, sonar, stereos, doom, space shuttle 6.455

Lumped Circuit Abstraction

Suppose we wish to answer this question:

 What is the current through the bulb?
We could do it the Hard Way...

Apply Maxwell's

Differential form Integral form

$$
\begin{aligned}
\nabla \times E=-\frac{\partial B}{\partial t} & \oint E \cdot d l=-\frac{\partial \phi_{B}}{\partial t} \\
\nabla \cdot J=-\frac{\partial \rho}{\partial t} & \oint J \cdot d S=-\frac{\partial q}{\partial t}
\end{aligned}
$$

Faraday's
Continuity

$$
\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}
$$ $\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

Instead, there is an Easy Way...

 First, let us build some insight:
Analogy

I ask you: What is the acceleration? You quickly ask me: What is the mass?
 I tell you:
 m

You respond: $a=\frac{F}{m}$

Done!!!

Instead, there is an Easy Way...

 First, let us build some insight:
Analogy

In doing so, you ignored

 - the object's shape - its temperature - its color- point of force application \longrightarrow Point-mass discretization

The Easy Way...

Consider the filament of the light bulb.

We do not care about

- how current flows inside the filament
- its temperature, shape, orientation, etc.

Then, we can replace the bulb with a discrete resistor
for the purpose of calculating the current.

The Easy Way...

Replace the bulb with a

discrete resistor

for the purpose of calculating the current.

\boldsymbol{R} represents the only property of interest! Like with point-mass: replace objects with their mass m to find $a=\frac{F}{m}$

The Easy Way...

\boldsymbol{R} represents the only property of interest!

\boldsymbol{R} relates element v and i

$$
I=\frac{V}{R} \quad \text { called element v-i relationship }
$$

R is a lumped element abstraction for the bulb.

\boldsymbol{R} is a lumped element abstraction for the bulb.

Although we will take the easy way using lumped abstractions for the rest of this course, we must make sure (at least the first time) that our abstraction is reasonable. In this case, ensuring that

are defined for the element

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 1

I must be defined. True when

$$
I \text { into } S_{A}=I \text { out of } S_{B}
$$

$$
\text { True only when } \frac{\partial q}{\partial t}=0 \text { in the filament! }
$$

$$
\int_{S_{A}} J \cdot d S \longrightarrow
$$

$$
\int_{S_{B}} J \cdot d S<\square
$$

Cite as: Anent Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

V Must also be defined.

Lumped Matter Discipline (LMD) Or self imposed constraints:

> Lumped circuit abstraction applies when elements adhere to the lumped matter discipline.

Demo

Lumped element examples whose behavior is completely captured by their V-I delationship.

Demo

Exploding resistor demo \longrightarrow can't predict that! Pickle demo \longrightarrow can't predict light, smell

So, what does this buy us?

Replace the differential equations with simple algebra using lumped circuit abstraction (LCA).

For example -

What can we say about voltages in a loop under the lumped matter discipline?

What can we say about voltages in a loop under LMD?

Kirchhoff's Voltage Law (KVL): The sum of the voltages in a loop is 0 .

What can we say about currents?

Consider

What can we say about currents?

$$
\oint_{S} J \cdot d S=-\frac{\partial q}{\partial t} \underset{0}{\text { under LMD }}
$$

$\Longrightarrow I_{c a}+I_{d a}+I_{b a}=0$

Kirchhoff's Current Law (KCL):

The sum of the currents into a node is 0 .

simply conservation of charge

KVL and KCL Summary

KVL:

$$
\sum_{j} v_{j}=0
$$

loop

KCL:

$$
\begin{aligned}
& \sum_{j} i_{j}=0 \\
& \text { node }
\end{aligned}
$$

6.002 Fall 2000 Lecture 1

