Incremental Analysis

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Nonlinear Analysis

Analytical method
 Graphical method

Today
 - Incremental analysis

Reading: Section 4.5

Method 3: Incremental Analysis

 Motivation: music over a light beam
Can we pull this off?

$i_{R} \propto I_{R}$
light intensity I_{R}
in photoreceiver

LED: Light
Emitting
expoDweep ©

$v_{I}(t) \longrightarrow i_{D}(t) \sim \sim$ light $\sim \sim \sim i_{R}(t) \longrightarrow$ sound nonlinear
 problem! will result in distortion

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Problem:

The LED is nonlinear \rightarrow distortion

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Insight:

Trick:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Result

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Result

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

The incremental method: (or small signal method)

1. Operate at some $D C$ offset or bias point V_{D}, I_{D}.
2. Superimpose small signal v_{d} (music) on top of V_{D}.
3. Response i_{d} to small signal v_{d} is approximately linear.

Notation:

$$
i_{D}=I_{D}+i_{d}
$$

total DC small variable offset superimposed signal

What does this mean

 mathematically?Or, why is the small signal response linear?

We replaced

$$
\begin{array}{ll}
i_{D}=f\left(v_{D}\right) & \text { large } D C \\
v_{D}=V_{D}+\Delta \overparen{v_{D}} v^{\text {increment }} \begin{array}{l}
\text { about } V_{D}
\end{array}
\end{array}
$$

using Taylor's Expansion to expand $f\left(v_{D}\right)$ near $v_{D}=V_{D}$:

$$
\begin{aligned}
i_{D}=f\left(V_{D}\right) & +\left.\frac{d f\left(v_{D}\right)}{d v_{D}}\right|_{v_{D}=V_{D}} \cdot \Delta v_{D} \\
& +\frac{1}{21} \frac{d^{2} f\left(v_{D}\right)}{d v_{D}} \cdot \Delta v_{v_{D}=V_{D}}^{2}+\cdots
\end{aligned}
$$

neglect higher order terms because Δv_{D} is small
$i_{D} \approx f\left(V_{D}\right)+\left.\frac{d f\left(v_{D}\right)}{d v_{D}}\right|_{v_{D}=V_{D}} \cdot \Delta v_{D}$

constant constant w.r.t. Δv_{D} w.r.t. Δv_{D} slope at V_{D}, I_{D}

We can write

equating $D C$ and time-varying parts,

Cite as: Anent Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

In our example,

$$
i_{D}=a e^{b v_{D}}
$$

From X: $I_{D}+i_{d} \approx a e^{b V_{D}}+a e^{b V_{D}} \cdot b \cdot v_{d}$

Equate $D C$ and incremental terms,

$$
\begin{aligned}
I_{D}=a e^{b V_{D}} \rightarrow & \text { operating point } \\
& {\left[\begin{array}{l}
\text { aka bias pt. } \\
\text { aka DC offset }
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& i_{d}=\underbrace{a e^{b V_{D}}} b \cdot v_{d} \\
& i_{d}=\underbrace{I_{D} \cdot b \cdot v_{d}} \rightarrow \begin{array}{c}
\text { small signal } \\
\text { behavior }
\end{array} \\
& \text { constant } \rightarrow \text { linear! }
\end{aligned}
$$

Graphical interpretation

$$
\begin{aligned}
& I_{D}=a e^{b v_{D}} \quad \longrightarrow \text { operating point } \\
& i_{d}=I_{D} \cdot b \cdot v_{d}
\end{aligned}
$$

we are approximating (A) with (B)

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

We saw the small signal $\underset{\rightarrow}{\longrightarrow}$ mathematically Large signal circuit:
now, circuit

$$
I_{D}=a e^{b V_{D}}
$$

Small signal repose: $i_{d}=I_{D} b v$
$v_{d}-$
$-\quad \circ$
$R=\frac{1}{I_{D} b}$

small signal circuit:

behaves like:

Linear!
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

