Energy, CMOS

Review

$P=\frac{V_{S}^{2}}{R_{L}+R_{O N}}$
open
T_{2} : open
closed

$\bar{P}=C V_{s}{ }^{2} f \star \boldsymbol{*}$

Reading: Section 11.5 of A \& L.

Review

Square wave input

$$
=V_{c}{ }^{2} f
$$

$$
R_{L} \gg R_{O N}
$$

independent of f. MOSFET ON half the time.

In standby mode,
In standby mode, half the gates in a chip can $f \rightarrow 0$,
so dynamic power is 0 be assumed to be on.
So $\bar{P}_{\text {static }}$ per gate is
still $\frac{V_{s}^{2}}{2 R_{t}}$

Review

$$
\bar{P}=\frac{V_{S}^{2}}{2 R_{L}}+C V_{S}^{2} f
$$

Chip with 10^{6} gates clocking at 100 MHz $C=1 f \mathrm{~F}, R_{L}=10 \mathrm{~K} \Omega, f=100 \times 10^{6}, V_{S}=5 \mathrm{~V}$ $\bar{P}=\underset{\text { gates }}{10^{6}}\left[\frac{5^{2}}{2 \times 10 \times 10^{3}}+10^{-15} \times 5^{2} \times 100 \times 10^{6}\right]$

$$
=10^{6}[1.25 \text { milliwatts }+2.5 \mu \text { watts }]
$$

$$
\text { 1.25KWatts }+2.5 \text { Watts }
$$

- independent of f
- also standby power (assume $\frac{1}{2}$ MOSFETs
ON if $f \rightarrow 0$)
- must get rid of this!
- αf
- $\alpha V_{S}{ }^{2}$
reduce V_{S}
$5 \mathrm{~V} \rightarrow 1 \mathrm{~V}$
$2.5 \mathrm{~V} \rightarrow 150 \mathrm{~mW}$

How to get rid of static power

Intuition:

New Device PFET

- N-channel MOSFET (NFET)

on when $v_{G S} \geq V_{T N}$ off when $v_{G S}<V_{T N}$ e.g. $V_{T N}=1 V$
- P-channel MOSFET (PFET)

Consider this circuit:

works like an inverter!

Consider this circuit:

works like an inverter!

Key: no path from V_{S} to GND! no static power!

Let's compute $\bar{P}_{\text {DxNamic }}$

From * *
$P=C V_{s}^{2} f$

For our previous example -

$$
\begin{aligned}
& C=1 f F, V_{S}=5 \mathrm{~V}, f=100 \mathrm{MHz}, 1 \\
& \bar{P}=C V_{S}^{2} f \\
& =10^{-15} \times 5^{2} \times 100 \times 10^{6} \\
& =2.5 \mu \text { watts per gate } \\
& \bar{P}=2.5 \mu \text { watts for } 10^{6} \text { gate chip }
\end{aligned}
$$

How to reduce power

(A) $V_{S} \quad 5 \mathrm{~V} \rightarrow 3 \mathrm{~V} \rightarrow 1.8 \mathrm{~V} \rightarrow 1.5 \mathrm{~V}$ \sim PIV $\rightarrow 170$ watts \rightarrow better, but high

(B) Turn off clock when not in use. (C) Change V_{S} depending on need.
$\rightarrow \rightarrow$ next time:
power supply

CMOS Logic

NAND:

In general, if we want to implement F

