Dependent Sources and Amplifiers

Review

- Nonlinear circuits - can use the node method

 - Small signal trick resulted in linear

 - Small signal trick resulted in linear response

 response}

Today

- Dependent sources

- Amplifiers

Reading: Chapter 7.1, 7.2

Dependent sources

Seen previously

Resistor

$$
i=\frac{v}{R}
$$

$\begin{array}{ll}\text { Independent } \\ \text { Current source } & +\quad- \\ \rightarrow\end{array}$

2-terminal 1-port devices

New type of device: Dependent source

E.g., Voltage Controlled Current Source Current at output port is a function of voltage at the input port

Dependent Sources: Examples

Example 1: Find V

independent current
 source

$$
V=I_{0} R
$$

Dependent Sources: Examples

Example 2: Find V

voltage controled current source

Dependent Sources: Examples

Example 2: Find V

voltage
 controled
 current
 source

$V=I R=\frac{K}{V} R$
or $\quad V^{2}=K R$
or $\quad V=\sqrt{K R}$

$$
\begin{aligned}
& =\sqrt{10^{-3} \cdot 10^{3}} \\
& =1 \text { Volt }
\end{aligned}
$$

Another dependent source example

Find v_{O} as a function of v_{I}.

Another dependent source example

$$
\begin{aligned}
i_{D} & =f\left(v_{I N}\right) \\
\text { e.g. } \quad i_{D} & =f\left(v_{I N}\right) \\
& =\frac{K}{2}\left(v_{I N}-1\right)^{2} \text { for } v_{I N} \geq 1 \\
i_{D} & =0 \quad \text { otherwise }
\end{aligned}
$$

Find v_{O} as a function of v_{I}.

Another dependent source example

Find v_{O} as a function of v_{I}.

Another dependent source example

$$
\begin{aligned}
& \text { KL } \\
& -V_{S}+i_{D} R_{L}+v_{O}=0 \\
& v_{O}=V_{S}-i_{D} R_{L} \\
& v_{0}=V_{S}-\frac{K}{2}\left(v_{I}-1\right)^{2} R_{L} \quad \text { for } v_{I} \geq 1 \\
& v_{O}=V_{S}
\end{aligned}
$$

Hold that thought

Next, Amplifiers

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 - Fall 2002: Lecture 8

Why amplify?

Signal amplification key to both analog and digital processing.

Analog:

Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communcation

Why amplify?

Amplification is key to noise tolerance during communcation

No amplification

Try amplification

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Why amplify? Digital:

Static discipline requires amplification! Minimum amplification needed:

An amplifier is a 3-ported device, actually

Power port

Input port

Output
port

We often don't show the power port.
Also, for convenience we commonly observe "the common ground discipline."
In other words, all ports often share a common reference point called "ground."

How do we build one?

Remember?

KV

$$
\begin{gathered}
-V_{S}+i_{D} R_{L}+v_{O}=0 \\
v_{O}=V_{S}-i_{D} R_{L}
\end{gathered}
$$

$$
v_{O}=V_{S}-\frac{K}{2}\left(v_{I}-1\right)^{2} R_{L} \quad \text { for } v_{I} \geq 1
$$

$$
v_{O}=V_{S} \quad \text { for } v_{I}<1
$$

Claim: This is an amplifier

So, where's the amplification?

Let's look at the v_{O} versus v_{I} curve.

$$
\begin{aligned}
& \text { e.g. } \quad V_{S}=10 \mathrm{~V}, \quad K=2 \frac{m A}{V^{2}}, \quad R_{L}=5 \mathrm{k} \Omega \\
& \begin{aligned}
v_{O}= & V_{S}-\frac{K}{2} R_{L}\left(v_{I}-1\right)^{2} \\
= & 10-\frac{2}{2} \cdot 10^{-3} \cdot 5 \cdot 10^{3}\left(v_{I}-1\right)^{2} \\
v_{O} & =10-5\left(v_{I}-1\right)^{2}
\end{aligned}
\end{aligned}
$$

v_{I}

$$
\frac{\Delta v_{O}}{\Delta v_{I}}>1
$$

Plot v_{O} versus v_{I}

$$
v_{O}=10-5\left(v_{I}-1\right)^{2}
$$

Measure v_{O}.

One nit

Mathematically,

$$
v_{O}=V_{S}-\frac{K}{2} R_{L}\left(v_{I}-1\right)^{2}
$$

So is mathematically predicted behavior

One nit

However, from

$$
i_{D}=\frac{K}{2}\left(v_{I}-1\right)^{2} \quad \text { for } v_{I} \geq 1
$$

For $v_{O}>0, V C C S$ consumes power: $v_{O} i_{D}$ For $v_{o}<0$, VCCS must supply power!

If VCCS is a device that can source power, then the mathematically predicted behavior will be observed -

If VCCS is a passive device, then it cannot source power, so v_{O} cannot go -ve. So, something must give!

Turns out, our model breaks down.

Commonly $i_{D}=\frac{K}{2}\left(v_{I}-1\right)^{2}$
will no longer be valid when $v_{O} \leq 0$. e.g. i_{D} saturates (stops increasing) and we observe:

